Proteins & their structure

Proteins - classified by functions

- **Transport Proteins** - bind & carry ligands
- **Enzymes** - catalytic activity and function
- **Storage Proteins** - albumin, gluten, casein, ferretin
- **Contractile (Motor)** - can contract, change shape, elements of cytoskeleton (actin, myosin, tubulin)
- **Structural (Support)**:
 - collagen of tendons & cartilage,
 - elastin of ligaments (tropoelastin),
 - keratin of hair, feathers, & nails,
 - fibrin of silk & webs
- **Defensive (Protect)**:
 - antibodies (IgG), fibrinogen & thrombin,
 - snake venoms, bacterial toxins
- **Regulatory (Signal)**: regulate metabolic processes, hormones,
- **transcription factors & enhancers**, growth factor proteins
- **Receptors** (Detect stimulus):
 - light & rhodopsin,
 - membrane receptor proteins and acetylcholine or insulin.

Proteins & their structure

Nomenclature - classes of proteins

Based on **SOLUBILITY of PROTEINS**

Simple PROTEINS include:

1. **Albumins** - soluble in water, globular, mostly enzymes
2. **Globulins** - soluble in dilute aqueous solutions; insoluble in pure distilled H2O
3. **Prolamins** - insoluble in water; soluble in 50% to 90% simple alcohols
4. **Glutelins** - insoluble in most solvents; soluble in dilute acids/bases
5. **Protamines** - not based upon solubility; small MW proteins with 80% Arginine & no Cysteine
6. **Histones** - unique/structural - complexed w DNA
 - high content basic aa's - 90% Arg, Lys, or His
7. **Scleroproteins** - insoluble in most solvents
 - fibrous structure - cartilage & connective tissue
 - Collagen - high Glycine, Proline, & no Cysteine when boiled makes gelatin
 - Keratins - proteins of skin & hair high basic aa's (Arg, His, Lys), but w Cys

Proteins & their structure

PROTEINS... work horses of cell metabolism

PROTEOME: entire complement of an organism's proteins:

- yeast ≈ 6,000 proteins
- human ≈ 32,000 proteins

We'll look at how Structure gives rise to Function:

- a) structure: primary, secondary, tertiary, & quaternary
- b) protein folding – chaperones
- c) degradation/turnover – proteosomes
- d) molecular motors
- e) enzyme kinetics

Proteins & their structure

pages 63-78
Complex Proteins:

- **lipoproteins** - blood, membrane, & transport proteins
- **glycoproteins** - antibodies, cell surface proteins
- **nucleoproteins** - ribosomes & organelles

Common terminology:
- peptide = short chain of amino acids (20-30)
- dipeptide = 2 amino acids
- tripeptide = 3 amino acids
- polypeptide = many amino acids (up to 4,000)
- protein = polypeptide with well defined 3D structure

Structure of Proteins

The variety of protein structures may be INFINITE...

- average protein has 300-400 amino acids & has a MW of 30 to 45kDa
 - a PROTEIN of 300 amino acids made with 20 different kinds of amino acids can have 2^{30} different linear arrays of aa's that's 10^{90} different proteins

- 1st protein sequenced was Beef Insulin* by Fred Sanger - 1958 Nobel Prize winner
- 2 polypeptides [21/30 aa's] Humulin & ADA

- to date about 100,000 protein have been sequenced
- only about 10,000 structures known [2K/yr]
- E. coli make about 3,000 proteins; humans about 100,000

4 levels of protein structure are recognized

- **Primary** - linear sequence of aa's
- **Secondary** - regular, recurring orientation of aa in a peptide chain due to H-bond
- **Tertiary** - complete 3-D shape of a peptide
- **Quaternary** - spatial relationships between different polypeptides or subunits

Protein Primary Sequence is...

- Linear sequence of amino acids in a polypeptide (zymogram)
- Repeated peptide bonds form the backbone of the polypeptide chain
- R side groups project outward on alternate side

- Chain... one end polypeptide chain has free (unlinked) amine group: **N-terminus**
- other end has a free (unlinked) carboxyl group: **C-terminus**

- Size... protein size is specified by mass (MW in daltons = 1 amu)
- average MW of a single amino acid = 113 Da
- thus if a protein is determined to have a mass of 5,763 Da = 51 amino acids
- average yeast protein = 52,728 Da [52.7 kDa] with about 466 amino acids

- Protein Primary Sequence today is determined by reading GENOME Sequence

- Function is derived from the 3D structure (conformation) specified by the primary amino acid sequence and the local environs interactions
Primary sequence... & some consequences

Polymorphism... proteins may vary in primary sequence but have the same function. ex: enzymes H_2O_2 --> 2 H_2O + O_2
inter-specific: between species [diff. aa sequences]
intra-specific: within a species [liver vs. kidney]

Invariants... don't vary significantly in aa sequence examples: ubiquitin (proteosomes) & histones (chromosomes)
Site Specificity... sequences determine intra-cellular location signal sequences, prosthetic binding sites, etc...
Families of proteins: different but related functions evolved from a single ancestral protein, 30% + commonality of sequence... serine proteases (trypsin, chymotrypsin, elastase)

Homologous Proteins: evolved in related fashion & perform the same cellular function in different species ex: cytochrome-C: in duck & chickens = 2 variants & in yeast & horses = 48 variants

Mutation - change in primary aa sequence = defective protein - SICKLE CELL

Secondary structure - 3D conformation of portions of polypeptide chains

Alpha helix* described by Linus Pauling 1954 Nobel using X-ray diffraction technique

peptide backbone around long axis core rigid cylinder R-groups radiate outward
3.6 aa per 360° turn single repeat turn of helix (360°) = 0.54 nm right handed helix - (counterclockwise)
helix formed from H-bond interactions H of N (of any aa) & -C=O- (of 4th aa)
½ of aa's in globular proteins occur in alpha helix flexible - wool is stretchable (breaks H-bonds)

Beta Sheet (fig 4.10) (model = silk protein fibroin)
a linear extended ZIG-ZAG pleated sheet formed by H-bonds intra- & inter-chain
resist pulling (tensile) forces = strength of silk fibers non-α/β regions = hinges, turns, loops, etc = flexibility ribbons & sheets*
turns - mcb 3.6

MOTIFS: combos of recurring arrangements of α-helix and/or β-sheets in unrelated proteins.... such as:

Hairpin Beta Motif... antiparallel beta-sheets joined by

Structural MOTIFS: regular 3D conformations or folds within secondary or tertiary structure common to many different proteins.... indicative of a particular 3-D architecture & associated with specific function.... same structure is present in different proteins that have similar functions; recurring arrangements of α-helix and/or β-sheets in unrelated proteins.... such as:

EF hand... two short helices connected by a loop; a Ca²⁺ ion binder region of hydrophilic residues present in over 100 Ca²⁺ binding proteins. fig 3.9b*

Helix Loop Helix... commonly bind gene transcription factors to DNA

Zinc Finger... 1 α and 2 β strands with antiparallel orientations. forms fingers bound by Zn ion that often link to DNA * ΔRNA fig 3.9c*

Coiled Coil... α helices, where the hydrophobic amino acids wind together forming a coil; also called leucine zippers: common to transcription factors. fig 3.9a*
Tertiary level

most responsible for 3-D orientation of proteins in space
- thermodynamically most stable conformation
- weak non-covalent interactions
 - hydrophobic interior & hydrophilic exterior
- S-S bridges

Protein Folding... forms 3D shapes & binding sites
occurs via H-bonds & S-S bridges

Protein Folding... forms 3D shapes & binding sites
occurs via H-bonds & S-S bridges

some examples:
- Myoglobin
 - MW 16,700 - animal muscle protein - stores O2
- Cytochrome-C
 - MW 12,400 - heme binding single polypeptide of 100 aa's in ETS of mitochondria
- Lysozyme
 - MW 14,600 enzyme; egg white & human tears
- Ribonuclease
 - MW 13,700 enzyme of 124 aa w 4 S-S

DOMAINS - distinct modules or structural element of the tertiary level of protein structure...
- compact folded regions in a polypeptide of 100-150 amino acids, often self-forming, self-stabilizing, that often fold independently.

3 classes of domains:
- functional domain - region with particular activity characteristic of a protein CATALYSIS:
 - kinase domains add PP to other molecules.
- structural domain - region of 40+ aa's in a stable 2nd or 3rd-ary conformation (repeatable),
 - ex: 1. hemagglutinin - a surface protein on influenza viruses, that is made of 3 quaternary identical subunits composed of 2 polypeptides (HA1 & HA2);
 - each HA peptide has two domains... globular domain & a fibrous domain
 - EGF (Epidermal Growth Factor) domain - small soluble peptide hormone
 - that binds to embryonic cells in skin/connective tissue & promotes cell division. EGF is generated by proteolytic hydrolysis of the domain from several other proteins, all of which have an EGF domain as a structural part.
- topological domain - distinctive spatial relationships to rest of a protein;
 - ex: membrane proteins with extrinsic (cytoplasmic domain) and intrinsic (membrane spanning domain).

QUARTERNARY structure:
- multiple polypeptides each with 3-D conformations

Some Common Quaternary Level Protein Shapes...
1. dimers - self recognizing symmetrical regions
 - bind together @ identical binding sites
 - [Catabolic Activator Protein (PDH)]
2. tetramers - 4 identical subunits...
 - [neuraminidase]
3. filaments - polymers of subunits each bound together in an identical way forming a ring or helix see [keratin]
4. coiled-coil - 2 parallel helices forming a stiff filament, linked via a stripe of hydrophobic aa's.

Multi-Enzymes Complexes:
- [pyruvate dehydrogenase]
- [ATP synthase]

PROTEIN FAMILIES – proteins with a common evolutionary ancestry

function derives from 3D structure that is due to primary sequence, thus some proteins have many identical or chemically similar amino acids in identical sequence positions each may contain domains that closely resembles that of other proteins

Proteins with common ancestors are known as homologs and homologous proteins belongs to a “family”
taxonomic cladistics (tree diagrams) of sequence analysis are used to show homologies

ex: 1. serine proteases ecb fig 4.21 - proteolytic enzymes with nearly identical amino acid sequences all with a SER at the active site
 - myoglobin - monomeric oxygen binder of muscle
 - hemoglobin - tetrameric oxygen binder of blood

Today, computer modeling is used to predict function of yet unisolated proteins by comparing known sequence homologies

PROTEIN FAMILIES – proteins with a common evolutionary ancestry

function derives from 3D structure that is due to primary sequence, thus some proteins have many identical or chemically similar amino acids in identical sequence positions each may contain domains that closely resembles that of other proteins

Proteins with common ancestors are known as homologs and homologous proteins belongs to a “family”
taxonomic cladistics (tree diagrams) of sequence analysis are used to show homologies

ex: 1. serine proteases ecb fig 4.21 - proteolytic enzymes with nearly identical amino acid sequences all with a SER at the active site
 - myoglobin - monomeric oxygen binder of muscle
 - hemoglobin - tetrameric oxygen binder of blood

Today, computer modeling is used to predict function of yet unisolated proteins by comparing known sequence homologies

DOMAINS - distinct modules or structural element of the tertiary level of protein structure...
compact folded regions in a polypeptide of 100-150 amino acids, often self-forming, self-stabilizing, that often fold independently.

3 classes of domains:
- functional domain - region with particular activity characteristic of a protein CATALYSIS:
 - kinase domains add PP to other molecules.
- structural domain - region of 40+ aa's in a stable 2nd or 3rd-ary conformation (repeatable),
 - ex: 1. hemagglutinin - a surface protein on influenza viruses, that is made of 3 quaternary identical subunits composed of 2 polypeptides (HA1 & HA2);
 - each HA peptide has two domains... globular domain & a fibrous domain
 - EGF (Epidermal Growth Factor) domain - small soluble peptide hormone
 - that binds to embryonic cells in skin/connective tissue & promotes cell division. EGF is generated by proteolytic hydrolysis of the domain from several other proteins, all of which have an EGF domain as a structural part.
- topological domain - distinctive spatial relationships to rest of a protein;
 - ex: membrane proteins with extrinsic (cytoplasmic domain) and intrinsic (membrane spanning domain).

QUARTERNARY structure:
- multiple polypeptides each with 3-D conformations

Some Common Quaternary Level Protein Shapes...
1. dimers - self recognizing symmetrical regions
 - bind together @ identical binding sites
 - [Catabolic Activator Protein (PDH)]
2. tetramers - 4 identical subunits...
 - [neuraminidase]
3. filaments - polymers of subunits each bound together in an identical way forming a ring or helix see [keratin]
4. coiled-coil - 2 parallel helices forming a stiff filament, linked via a stripe of hydrophobic aa's.

Multi-Enzymes Complexes:
- [pyruvate dehydrogenase]
- [ATP synthase]
Multimeric proteins have Quaternary Structure...

3D shape of a protein... involving more than one polypeptide or subunits of a protein

HA (hemagglutinin) is a trimer of 3 identical polypeptide subunits held together by the weak electrostatic 3o level forces

Some proteins form Macromolecular Assemblies...

very large (> 1 mDa in ma), 30-300 nm in size, & 10-100 individual peptides

examples include: viral capsids, some cytoskeletal complexes, molecular machines, & mRNA transcription complex (some 60 proteins - fig 3.9*)

Selected examples of some Molecular Machines can be seen in Table 3.1*

we will look at some of these in greater detail later

Protein Conformation is critical to Biological Function

DENATURATION loss of 3-D conformation by heat, pH, organic solvents, detergents

RENATURATION - regaining of biological activity via self-assembly

How does 3D protein folding come about? *FUNCTION follows FORM*

peptide bond is PLANAR (partial double bond character) as are all the atoms bonded to it all occur in same plane & thus there is no free rotation = restricts protein conformations

the native folded conformation is most stable, i.e., in lowest free energy state, often dictated by R-group properties (size, hydrophobicity) hydrophilicity, ionic strength, etc...

folding involves: changes in 3D conformations:

- by orderly steps in a sequential way, each step facilitating the next -

 - first 2nd structure (α & β), then structural motifs & assembly of complex domains, followed by 3rd level forces and/or 4th shapes. fig 3.15*

Unless protected during folding, proteins would interact with all the other molecules in a cell.

Cells makes 2 sets of proteins that facilitate folding: CHAPERONES...

Molecular Chaperones - which bind and stabilize newly made unfolded proteins preventing these proteins from self aggregating and/or being denatured before folding.

Chaperonins - which makeup a small folding chamber into which unfolded proteins are moved to provide a proper environment favoring native folding of a protein.
Molecular Chaperones - are families of proteins to help "properly fold" a new protein...
multiple ones bind to newly made proteins and include:
 Hsp70 (of cytosol & mitoplasm); Bip (of the E.R.); DnaK (of bacteria).
1st discovered by heat shock treatment (under temperature elevation (25°C → 32°C) cells
make heat shock proteins (HSPs); mutant bacteria didn’t make Hsp nor assemble normal
proteins... when bound with ATP = OPEN conform w hydrophobic pocket for new unfolded
protein ADP conform closes around protein and aids native folding...

Hsp are named according to the molecular weights (Hsp-70 = 70 kilodaltons)
Hsp-40 binds new protein amino acid chains & carries it to Hsp-70
Hsp-70 grabs proteins by an open cleft when ATP is bound to Hsp-70;
in its ADP conform closes around protein and aids native folding...
Hsp-90 receives partially folded proteins from Hsp-70’s and other chaperones...
helps join polypeptides into larger quaternary proteins forming
multi-subunit proteins, such as cellular receptors.

Misfolded Proteins & Disease
CJD: Creutzfeldt-Jacob disease, genetic based or acquired
(eating "mad cow" tissue) fatal neurological disease due to misfolded PRPc protein.
Spongiform Encephalopathy (SE) – vacuolation (holes) in brain nerve tissue
PRION: a defective protein agent (PrPsc) due to mis-coded gene (PRNPc)
native prion protein is PrPc & resides on nerve cell surfaces...
defective protein PrPsc accumulates forming aggregates
that lead to CJD & SE’s

Both PRION proteins can have identical aa sequence,
but may fold differently (are known as conformers =
proteins differ only in conformation)

A. normal (PrPc) protein...
 mostly α-helix foldings - remains soluble
B. abnormal PrPsc protein...
 45% β-sheet - insoluble & protease insensitive
 produces cell surface aggregates that kill cells

Chaperonins or Foldase
- small folding CHAMBERS into which unfolded proteins are moved to provide
a proper environment favoring native folding.
- a molecular Machines made of chaperone proteins hsp70’s & hsp60’s form a
barrel shaped structure made of 14 polypeptides (from GroEL gene) in 2 donut
rings with a cap (from GroES gene) that opens an inner chamber, where a cell's
new protein enters & is folded.
barrel chamber has 2 conformations: tight & relaxed;
new polypeptides is inserted into cavity of GroEL chamber & conformational
changes favor native protein folding; ATP hydrolysis = relaxed state & release
of a native 3D-protein

Protein Degradation (Digestion/Turnover)
cells often contain specialized mechanisms or pathways to digest cell proteins...
1. that rapidly turnover proteins with short half-lives
2. that recognize & eliminate damaged or misfolded proteins that can lead to
diseases as Huntington’s, Alzheimers’s, and Creutzfeldt-Jacob disease.
many proteins are degraded in cytosol using proteases hydrolyze peptide bonds
some proteins are degraded in the lysosomes via phagocytosis,
but most proteins are degraded by large complexes of proteolytic enzymes in
structures known as PROTEASOMES by ubiquitin-mediated proteolysis (UMP)
short half-life proteins hold a signal sequence targeting proteins for UMP
and misfolded proteins seem to be recognized for degradation by the UMP.
PROTEOSOMES are large multi-enzyme complexes (fig 7.36*)

Average human cell holds between 20,000 & 30,000 proteasomes. Each proteasome is a barrel shaped complex (2,400kD) made of 4 parts
1) a Lid of 9 proteins,
2) a Regulatory Cap that lets in only ubiquitinized proteins,
3) a Base of 4 stacked protein rings with protease activities, and
4) a Base Cap.

Protein Digestion... begins when cells add small polypeptide (ubiquitin)-to protein to be degraded.

Ubiquitin: globular protein of 76 aa (virtually identical aa sequence in bacteria, yeast, or mammals). 3 ubiquitin ligase enzymes [E1, E2, E3] add Ubiquitin to proteins to be degraded, a ubiquitinized protein is targeted for entry into a Proteasome’s central chamber, where proteases with chymotrypsic, trypsic, & caspase-like proteolytic activity cleave the protein into peptides. The ubiquitin is recycled.

Protein Engineering...
producing novel proteins, with unique shapes, via artificial means

1. **use proteomics...**
 make artificial proteins of desired sequence to functions as “drugs”
 vaccine protein - binds to viral surface and inactivates it
 simplistic idea - but it's hard to make connection from 1o to 3o

2. **modify existing proteins via site directed mutagenesis**
 isolate a gene, alter its sequence in precise way,
 clone the protein product
 - can be used to study effect of one amino acid change on 3D-folding
 - often done with clinically useful proteins to enhance efficiency (Km)

3. **structure based drug design**
 make drug molecules with high binding affinity to known proteins
 [to remove it] use computers to design 'virtual' drug to fit into
 a protein rendering it inactive

4. **Bionanotechnology - viruses made to order** (A. belcher of MIT)